## **Project overview**



#### LIFECYCLE EXTENSION THROUGH PRODUCT REDESIGN AND REPAIR, RENOVATION, REUSE, RECYCLE STRATEGIES FOR USAGE&REUSAGE-ORIENTED BUSINESS MODELS

T-REX Consotium



# DISCLAIMER

- This document is authored by RISE Laboratory University of Brescia ("RISE").
- The document is also edited by the partners of the T-REX Project.
- The intellectual property of the document and of its contents belongs to RISE and the partners of T-REX project.
- This document and any of its parts may not be used, reproduced or diffused without the express written permission of RISE and the partners of T-REX project.
- Any misuse will be prosecuted by law.







# Project overview Management and planning







# **Project Characteristics - under G.A.-**

- Project title: "Lifecycle Extension through Product Redesign and Repair, Renovation, Reuse, Recycle Strategies for Usage&Reusageoriented Business Models"
- Acronym: T-REX
- Contract number with EC: 609005
- Entry into force of the contract: 2nd July 2013
- Project start date: 1st October 2013
- Duration: 36 months
- Overall budget: **5,126,411.00** €
- 2 reporting periods:
  - $\rightarrow$  Period 1: From month 1 to month 18
  - $\rightarrow$  Period 2: From month 18 to end of the project







# Concept

|                                                         | "traditional" business model                                                                                                                                                                                                                                           | New business model                                                                                                                                                                                                                                                                                                                       |
|---------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Product design                                          | <ul> <li>Product is designed for the minimum cost</li> <li>Lifetime should be "enough"</li> </ul>                                                                                                                                                                      | <ul> <li>Product cost is less important. The relevant is the Total<br/>Cost of Ownership.</li> <li>The product is configured for the application.</li> <li>Product lifetime is enlarged.</li> </ul>                                                                                                                                      |
| Services, supply chain<br>and customer<br>relationships | <ul> <li>Product developer establishes conservative<br/>preventive maintenance policies. Maintenance is<br/>made "in house" or third parties</li> <li>After-sales services, mainly technical assistance<br/>and spare parts, are sources of revenue for the</li> </ul> | <ul> <li>Product developer make extra effort to minimize<br/>maintenance cost: leveraging on techniques and tools to<br/>optimise preventive and emphasize on prediction</li> <li>Services allow to increase the product availability</li> </ul>                                                                                         |
|                                                         | manufacturer (or third parties)                                                                                                                                                                                                                                        | - Services allow to <b>increase</b> the product <b>availability</b>                                                                                                                                                                                                                                                                      |
|                                                         | - Product sales as a one-off transaction                                                                                                                                                                                                                               | <ul> <li>Product-service system provision as a relational, long-term process</li> </ul>                                                                                                                                                                                                                                                  |
| Customer relations and                                  | <ul> <li>In the usage and end-of-life phase interactions<br/>between the manufacturer and the customer<br/>may not occur</li> <li>If they occur their monetary value is often<br/>negligible compared with the product value</li> </ul>                                | <ul> <li>Stable and continuous cash flows from customer to<br/>manufacturer over the product life-cycle, of a smaller entity<br/>compared to product sales</li> <li>Cash flows cover both the product and service component<br/>of the offer</li> </ul>                                                                                  |
| Cash flows                                              | - Product developer is not aware of the conditions in which the product is in operation                                                                                                                                                                                | <ul> <li>Product developer is aware of operating conditions</li> <li>Information from the product is collected to increase product availability (e.g. condition based monitoring), increase service efficiency (e.g. remote control) and transform the feedback from the field in input to the design of product and services</li> </ul> |
|                                                         | - Dismantling is in charge of the user                                                                                                                                                                                                                                 | - End of life is in charge of the producer. Some modules<br>could be re-used                                                                                                                                                                                                                                                             |







# S&T Objectives

- Develop and prototype, through three business application cases, a business platform for the offering of capital goods whose main elements are:
  - i. A business model oriented to transfer the access of the goods (the Product Service System) to the customer rather than the ownership (e.g. through renting).
  - ii. An improved design of the product and of its core systems, aimed at extending the lifecycle of the critical components, and to ease maintenance.
  - iii. A re-engineering of traditional (support) services and the definition of new services
- Industrial objectives:
  - i. Reduce operational maintenance service cost by 15%-30%;
  - ii. Re-use components for 55-70% depending on the product, and;
  - iii. Extend the life cycle of 30% 80% depending on the product or components.
  - → All of these contribute to reductions in the Life Cycle Cost in the range of 25-30%.







# Lever A. Business models

- New business model will be adopted, with the aim:
  - 1) of translating strategies into actions;
  - 2) of identifying the elements that can make the company move to an higher degree of "servitization" of the business
- The development of a maturity model will be helpful
  - From a conceptual side, it will clarify what are the elements that determine the ability of a firm to actually deploy a "usage-oriented" business model (e.g,. organisational approach, resources, performance management practices, relations with customers and suppliers).
  - From a practical side it will allow companies to understand their position and identify the set of actions to be undertaken and how to do it.
  - It will also support standardisation activities.
- This will be done at a conceptual/general level, and with specific reference to the business cases.







### Lever B. Product design for X (re-use, serviceability,...)

| Domain                     | Product evolution &<br>Re-used modules                                                                                                                                                                                                                  | Operation conditions                                                                                                                           | Source of equipment faults                                                                                                                                |  |  |  |  |
|----------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| Transport and manipulation | <ul> <li>Fork and must dimensions</li> <li>Battery</li> <li>Motors</li> <li>Counterweight</li> <li>Security components</li> <li>Hydraulic cilinders</li> <li>Remote control, navigation system</li> <li>Ergonomics components</li> </ul>                | <ul> <li>Loads</li> <li>Speed</li> <li>Distances</li> <li>Collisions</li> <li>Battery stress</li> <li>Battery load cycles</li> </ul>           | <ul> <li>Battery</li> <li>Motors (starter, alternator)</li> <li>Brakes</li> <li>Chain</li> <li>Electronic boards</li> </ul>                               |  |  |  |  |
| Machining<br>processes     | <ul> <li>CNC/PLC</li> <li>Spindle</li> <li>Mechanical axes (nut, screw, bearings, etc.)</li> <li>Motors</li> <li>Monitoring devices</li> <li>Hydraulics</li> </ul>                                                                                      | <ul> <li>Spindle speed, load</li> <li>Tools</li> <li>Temperature</li> <li>Refrigeration</li> <li>Power consumption</li> </ul>                  | <ul> <li>Spindle</li> <li>Axes</li> <li>Motors</li> <li>Electronic boards</li> </ul>                                                                      |  |  |  |  |
| Robotised<br>assembly      | <ul> <li>Robot area of work, volume</li> <li>Gripper/Tool</li> <li>Welding module</li> <li>Gearbox</li> <li>Motors</li> <li>Monitoring devices</li> <li>Handling, working tables, fixturing elements</li> <li>Fences and other security comp</li> </ul> | <ul> <li>Payload</li> <li>Motor activity</li> <li>End of arm tool changes</li> <li>Calibration procedure</li> <li>Power consumption</li> </ul> | <ul> <li>Gearbox</li> <li>Motors</li> <li>Control, unbalanced<br/>phase, payload excess</li> <li>End of arm tooling</li> <li>Electronic boards</li> </ul> |  |  |  |  |







# Lever C. Embedded condition monitoring and prediction









# Lever D. Asset Health Management. 'Fleet' Management

Tool for Asset Health Management (customized on the requirements of the business case):

- To collect information from the equipment installed base
- Support an optimized planning of maintenance activities, thus reducing the lifecycle cost of the product.









# Lever E. Service Engineering

- Identification of relevant product-related services that support the extension of product lifecycles
- Development of a methodology to describe product-related services in a standardised way (including outcome, processes, resources, customer interfaces e.g.), or "reference model"
- Development of a methodology to create service modules that allows a flexible bundling and configuration of product-related services
- Provision of a model for a rapid development of new services including configurable processes, task descriptions, methods and roles
- Extension of the model for rapid service development in order to integrate new product and service development processes
- Development of a self-assessment tool. i.e. the results of the study will be transferred to a database and via an online interface further companies could fill in the same questionnaire than in the study and as a response they will get the individual results of the study and their own position about their service design capabilities

























# **Detailed planning**



#### **T-REX Project Overview**



| 7.05         |             |                                                                                    |             |   |    |     |   |       |   |      |       |      |       |     |       |    |       |    |       |    |      |       |      |      |       | -  |       |
|--------------|-------------|------------------------------------------------------------------------------------|-------------|---|----|-----|---|-------|---|------|-------|------|-------|-----|-------|----|-------|----|-------|----|------|-------|------|------|-------|----|-------|
| I-RE         | Х           |                                                                                    |             | _ | _  | _   |   |       | _ | _    |       | + +  | _     |     | _     |    | _     |    | _     |    | _    |       |      | +-+  | —     |    |       |
| Task         | Deliv.r     | Description                                                                        | Leading     | 1 | 2  | 3 4 | 5 | 6 7   | * | 9 10 | 11 12 | : 13 | 14 15 | 16  | 17 18 | 19 | 20 21 | 22 | 23 24 | 25 | 26 2 | .7 28 | 29 3 | / 31 | 32 33 | 34 | 35 36 |
|              | remest      |                                                                                    | participant | - | -  | -   |   | reari |   | -    |       |      | -     |     | rear  | 2  |       |    | -     |    | _    |       | rea  | 13   | —     |    |       |
| VP           | · Basa      | arch Framework Definition                                                          | TEKNIKER    |   |    |     |   | -     | - | -    |       |      | -     | -   | -     |    | -     |    | -     |    | _    |       |      |      |       |    |       |
| T11          | . Hese      | Survey on actual marketing strategies and business models                          | LINIBS      |   |    |     |   |       |   | -    |       |      | -     |     | -     |    | -     |    | -     |    | _    |       |      |      |       | +  |       |
| T12          |             | Gan analysis                                                                       | TEKNIKER    |   |    |     |   |       |   | -    |       |      |       | +-+ |       |    |       |    |       |    | -    |       |      | +-+  |       |    |       |
| 11.6         | D11         | Survey on actual marketion stratenies and business models                          | LINIBS      |   |    |     |   |       |   | -    |       |      | -     | +-+ |       |    |       |    |       |    | -    |       |      | +-+  |       |    |       |
|              | D12         | Gan analysis for the development of usage-oriented business models                 | TEKNIKEB    |   | 17 | 10  |   |       |   | -    |       |      | -     |     |       |    |       |    |       |    | -    |       |      | +-+  |       |    |       |
| WP           | P Deve      | compent of the new business model and concentrual tools                            | LINIBS      |   |    |     |   |       |   |      |       |      |       |     |       |    |       |    |       |    | _    | -     |      |      |       | -  |       |
| T2.1         |             | Business model                                                                     | UNIBS       |   |    |     |   |       |   |      |       |      |       |     |       |    |       |    |       |    | _    |       |      |      | _     |    |       |
| T2.2         |             | Design for techniques extending product lifecycle and reduce environ impa          | UNIBS       | - |    |     |   |       |   |      |       |      |       |     |       |    | -     |    |       |    |      |       |      | +++  | -     |    |       |
| T2.3         |             | Service (re-)Engineering for support services                                      | IAO         |   |    |     |   |       |   |      |       |      |       |     |       |    |       |    |       |    |      |       |      | ++   | -     |    |       |
|              | D2.1        | Guidelines and reference model for the new business platform for the new           | UNIBS       |   |    | -   |   |       |   |      |       |      |       |     |       |    |       |    |       |    |      | -     |      |      | -     |    |       |
|              | D2.2        | Product re-design levels definition, and their possible applications in the four   | UNIBS       |   |    | -   |   |       |   |      |       |      |       |     |       |    |       |    |       |    |      | -     |      |      | -     |    |       |
|              |             | Configurable reference model (process, roles, methods & tools) for the re-         |             |   |    | -   |   |       |   | -    |       |      |       |     |       |    |       |    |       |    |      |       |      |      | -     |    |       |
|              | D2.3        | engineering or development of new services for product support                     | IAU         |   |    |     |   |       |   |      |       |      |       |     |       |    |       |    |       |    |      |       |      |      |       |    |       |
| VP.          | 3: Tech     | nologies for Fleet Operation and Maintenance                                       | TEKNIKER    |   |    |     |   |       |   |      |       |      |       |     |       |    |       |    |       |    |      |       |      |      | _     |    |       |
| T3.1         |             | Operation condition monitoring and predictive technology                           | TEKNIKER    |   |    |     |   |       |   |      |       |      |       |     |       |    |       |    |       |    |      |       |      |      | _     |    |       |
| T3.2         |             | Fleet-wide Asset Health Management knowledge                                       | PREDICT     |   |    |     |   |       |   |      |       |      |       |     |       |    |       |    |       |    |      |       |      |      |       |    |       |
| T3.3         |             | Fleet-wide Asset Health Management service                                         | PREDICT     |   |    |     |   |       |   |      |       |      |       |     |       |    |       |    |       |    |      |       |      |      |       |    |       |
| T3.4         |             | Operation and Maintenance services                                                 | PREDICT     |   |    |     |   |       |   |      |       |      |       |     |       |    |       |    |       |    |      |       |      |      |       |    |       |
|              | D3.1        | Operation condition monitoring and predictive technology                           | TEKNIKER    |   |    |     |   |       |   |      |       |      |       |     |       |    |       |    |       |    |      |       |      |      |       |    |       |
|              | D3.2        | Fleet-wide Asset Health Management                                                 | PREDICT     |   |    |     |   |       |   |      |       |      |       |     |       |    |       |    |       |    |      |       |      |      |       |    |       |
|              | D3.3        | Fleet-wide Asset Health Services                                                   | PREDICT     |   |    |     |   |       |   |      |       |      |       |     |       |    |       |    |       |    |      |       |      |      |       |    |       |
|              | D3.4        | Operation and Maintenance services                                                 | PREDICT     |   |    |     |   |       |   |      |       |      |       |     |       |    |       |    |       |    |      |       |      |      |       |    |       |
| WP           | 1: Imple    | mentation in Internal Transportation & Handling Domain                             | ULMA        |   |    |     |   |       |   |      |       |      |       |     |       |    |       |    |       |    |      |       |      |      |       |    |       |
| T4.1         |             | Business model application to transport solutions                                  | ULMA        |   |    |     |   |       |   |      |       |      |       |     |       |    |       |    |       |    |      |       |      |      |       |    |       |
| T4.2         |             | Transport product/service re-design roadmap                                        | ULMA        |   |    |     |   |       |   |      |       |      |       |     |       |    |       |    |       |    |      |       |      |      |       |    |       |
| T4.3         |             | Adaptive electronic battery regeneration                                           | ESE         |   |    |     |   |       |   |      |       |      |       |     |       |    |       |    |       |    |      |       |      |      |       |    |       |
| T4.4         |             | Operation and condition monitoring embedded in transport solutions                 | ULMA        |   |    |     |   |       |   |      |       |      |       |     |       |    |       |    |       |    |      |       |      |      |       |    |       |
| T4.5         |             | Business plan for transport solutions                                              | ULMA        |   |    |     |   |       |   |      |       |      |       |     |       |    |       |    |       |    |      |       |      |      |       |    |       |
|              | D4.1        | Business model for internal transport and handling                                 | ULMA        |   |    |     |   |       |   |      |       |      |       |     |       |    |       |    |       |    |      |       |      |      |       |    |       |
|              | D4.2        | Deployment of the new business model in transport and handling: Redesign           | ULMA        |   |    |     |   |       |   |      |       |      | _     |     |       |    |       |    |       |    |      |       |      |      |       |    |       |
|              | D4.3        | Adaptive electronic battery regeneration                                           | ESE         |   |    |     |   |       |   |      |       |      |       |     |       |    |       |    |       |    |      | _     |      |      |       |    |       |
|              | D4.4        | Operation and condition monitoring embedded in transport solutions                 | ULMA        |   |    |     |   |       |   |      |       |      |       |     |       |    |       |    |       |    |      |       |      |      |       |    |       |
|              | D4.5        | Transport and handling business plan simuation                                     | ULMA        |   |    |     |   |       |   |      |       |      |       |     |       |    |       |    |       |    |      |       |      |      |       |    |       |
| WP           | 5: Imple    | mentation in Machine Tool Domain                                                   | Fidia       |   |    |     |   |       |   |      |       |      |       |     |       |    |       |    |       |    |      |       |      |      |       | _  |       |
| T5.1         |             | Business model application to machine tools                                        | FIDIA       |   | _  | _   |   |       |   |      |       |      |       |     |       |    |       |    |       |    |      | _     |      |      |       | _  |       |
| T5.2         |             | Machine tools product/service re-design roadmap                                    | FIDIA       |   | _  | _   |   | _     | _ |      |       |      |       |     |       |    |       |    |       |    |      |       |      |      |       | _  |       |
| T5.3         |             | Re-design actions for high performance and high reliability electro-spindle        | IMA         | _ | _  | _   |   | _     |   |      |       |      |       |     |       |    |       |    |       |    |      |       |      |      |       |    |       |
| T5.4         |             | Operation and condition monitoring embedded in machine tool                        | FIDIA       | _ | _  | _   |   | _     |   | _    |       |      |       |     |       |    |       |    |       |    |      |       |      |      |       |    |       |
| 15.5         |             | Business plan for machine tool domain                                              | FIDIA       |   | _  | _   |   |       |   |      |       |      |       |     |       |    | _     |    |       |    |      |       |      |      |       |    |       |
|              | D5.1        | Business model in machine tool domain                                              | FIDIA       |   | _  | _   |   | _     |   |      |       |      |       |     |       |    | _     |    |       |    | _    | _     |      |      |       |    |       |
|              | 05.2        | Deployment of the new business model: Renovation and repair approach in            | FIDIA       |   | _  | _   |   |       |   | -    |       |      | _     | +   | _     |    | _     |    |       |    |      | -     |      |      |       | +  |       |
|              | D5.3        | Re-desing action for a novel, reliable electro-spindle                             | IMA         | _ | _  | _   |   |       | _ | -    |       |      | _     | +   | _     |    | -     |    | _     |    | -    | _     |      |      | _     | +  |       |
|              | D5.4        | Operation and condition monitoring embedded in machine tools                       | FILIA       | _ | _  | -   |   |       | _ | -    |       |      | _     | +   |       |    | -     |    | _     |    | -    | _     |      | -    | _     | +  |       |
|              | <u>Ш5.5</u> | Business plan simuation in machine tool                                            | FILIA       |   |    |     |   |       |   |      |       |      |       |     |       |    |       |    |       |    |      |       |      |      | _     | +  |       |
| WH<br>TO 1   | ): Imple    | mentation in Hoboliós Assembly Domain<br>Divisional mediation factor de activitado | KINE        |   |    |     |   |       |   |      |       |      |       |     |       |    |       |    |       |    |      |       |      |      | +     | +  |       |
| 16.1<br>TO C |             | Business model application to robotics solutions                                   | KINE        | - | -  | -   |   |       |   |      |       |      |       |     |       |    |       |    |       |    | -    | -     |      | ++   | -     | +  |       |
| 16.2         |             | Robotics solution product/service re-design roadmap                                | KINE        |   | -  | -   | + |       |   |      |       |      |       |     |       |    |       |    |       |    |      |       |      |      | -     | +  |       |
| 16.3<br>TC 4 |             | measuring methods of robot system operation and wear status                        | KINE        | _ | -  | -   | + |       | _ | -    |       |      |       |     |       |    |       |    |       |    |      |       |      |      | -     | +  |       |
| 16.4         | D0.4        | Dusiness plan for robotics solutions                                               | KINE        |   | -  | -   |   |       |   | -    |       |      |       | +   | _     |    | -     |    | -     |    |      |       |      |      | -     | +  |       |
| <i>i</i>     | 1.05.1      | EUCIDECK INCOME INF FORATION SECONDAY                                              | K IMP       |   |    |     |   |       |   |      |       |      |       |     |       |    |       |    |       |    |      |       |      |      |       |    |       |







# **Milestones**

| Table 1.3 c: List of milestones |                                                                                                                      |                                    |                               |                                                                                                                                                                                                |  |  |  |  |  |  |  |
|---------------------------------|----------------------------------------------------------------------------------------------------------------------|------------------------------------|-------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|
| Milestone<br>number             | Milestone name                                                                                                       | Work<br>Package(s)<br>involved     | Expected<br>date <sup>1</sup> | Assessment Criteria/Means<br>of verification <sup>2</sup>                                                                                                                                      |  |  |  |  |  |  |  |
| M 1                             | Consistencyamongst<br>the designed<br>Research<br>Framework and the<br>Contract Technical<br>Documents               | WP1                                | M 5                           | Reserach Framework defined,<br>gaps identified and business<br>models alreadyreferenced.                                                                                                       |  |  |  |  |  |  |  |
| M 2                             | The Technologies<br>and the Tools<br>prepared have been<br>suitable for<br>Implementation                            | <b>WP2</b> , WP3, WP4,<br>WP5, WP6 | M 18                          | Life cycle extent and Pay4Use<br>concepts developped and<br>new business models already<br>defined in the three<br>application domains. Fleet-<br>wide Asset Health<br>Management established. |  |  |  |  |  |  |  |
| M 3                             | The Technologies<br>and the Tools<br>prepared have been<br>suitable for<br>Implementation in<br>diverse environments | WP3, WP4, WP5,<br>WP6, WP7, WP8    | M 36                          | The demonstrators run<br>smoothly without major<br>adjustments in tools. T-REX<br>results validation done.                                                                                     |  |  |  |  |  |  |  |





T-REX Consortium T-REX Consortium KINE ROBOTIONS VILLING REPAIR IN MANUFACTURING SYSTEMS INNOVATIVE STRATEGIES FOR RENOVATION AND REPAIR IN MANUFACTURING SYSTEMS INNOVATIVE STRATEGIES FOR RENOVATION AND REPAIR IN MANUFACTURING SYSTEMS INNOVATIVE STRATEGIES FOR RENOVATION AND REPAIR IN MANUFACTURING SYSTEMS INNOVATIVE STRATEGIES FOR RENOVATION AND REPAIR IN MANUFACTURING SYSTEMS INNOVATIVE STRATEGIES FOR RENOVATION AND REPAIR IN MANUFACTURING SYSTEMS INNOVATIVE STRATEGIES FOR RENOVATION AND REPAIR IN MANUFACTURING SYSTEMS INNOVATIVE STRATEGIES FOR RENOVATION AND REPAIR IN MANUFACTURING SYSTEMS INNOVATIVE STRATEGIES FOR RENOVATION INNOVATIVE STRATEGIES FOR RENOVATION AND REPAIR IN MANUFACTURING SYSTEMS INNOVATIVE STRATEGIES FOR RENOVATION AND REPAIR IN MANUFACTURING SYSTEMS INNOVATIVE STRATEGIES FOR RENOVATION INNOVATIVE STRATEGIES INNOVATI

**Carretillas Elevadoras** 







MECHANICAL TECHNOLOGIES





Università degli Studi di Brescia



IAO